Development of snow-melting system utilizing LHTES for black-ice and snow removal on roads

An efficient snow-removal system was developed to improve winter safety for drivers. This system incorporates a latent-heat thermal energy storage (LHTES) system utilizing solar collectors and phase-change material (PCM). It demonstrated superior performance compared to sensible-heat thermal energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy storage 2024-11, Vol.102, p.114202, Article 114202
Hauptverfasser: Hyun, Su Woong, Shin, Dong Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An efficient snow-removal system was developed to improve winter safety for drivers. This system incorporates a latent-heat thermal energy storage (LHTES) system utilizing solar collectors and phase-change material (PCM). It demonstrated superior performance compared to sensible-heat thermal energy storage in terms of energy capacity, heat transfer rate, and charge/discharge efficiency. This study presents a demonstration application of a road snow-melting system employing LHTES. The system's flow rate, integrating LHTES for road snow removal, was optimized through numerical and experimental analyses. The snow-removal system includes a solar energy collector, a pavement layer with embedded LHTES, and a concrete pavement (CP). The results showed that at a flow rate of 6 L/min, the system stored 235 MJ of thermal energy by increasing the PCM temperature from 313 K to 343 K during an 18 h charging process. The snow-melting effectiveness was experimentally validated; the CP surface temperature increased from 268 K to 288 K in an ambient temperature of 248 K, effecting in the melting of 10 mm-thick snow. A total of 62.1 MJ of heat was transferred from the LHTES to the CP. Field tests confirmed that there was no snow accumulation on the surface of the CP where the heat pipes were embedded. •Developing solar thermal energy-charged LHTES for efficient snow melting.•Demonstration study of road snow removal system utilizing solar collector and LHTES.•Improved road safety in winter using eco-friendly road snow removal system.•No snow accumulation in field test in −25 °C environment.
ISSN:2352-152X
DOI:10.1016/j.est.2024.114202