The C-BixSnSb composite toward fast-charging and long-life sodium-ion batteries
Sodium ion batteries (SIBs) fitted with high-rate and high-capacity anodes are attractive for their higher energy density and faster charging capability. However, it is still a challenge to develop high-energy SIBs with high power and long life, due to the sluggish kinetic and limited Na+ insertion...
Gespeichert in:
Veröffentlicht in: | Journal of energy storage 2024-07, Vol.93, p.112407, Article 112407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sodium ion batteries (SIBs) fitted with high-rate and high-capacity anodes are attractive for their higher energy density and faster charging capability. However, it is still a challenge to develop high-energy SIBs with high power and long life, due to the sluggish kinetic and limited Na+ insertion in electrode materials. The inherent crystal structure and constituent element are two important factors to resolve the critical issues faced above. Taking the merits of layer-structure and middle-entropy, herein, we proposed and designed a high ion-conductive composite combing with ternary alloy and layered BixSnSb@C nanofibers, which eliminate ion migration barriers while maintaining the structural framework for superior rate property and cycle stability. Used as anode for SIBs, the multiphase BixSnSb@C with adjustable Bi content exhibits excellent Na storage capability as compared to their single phase counterpart. Specially, up to a rate of 132C (50 A g−1), the capacity is still as high as 400 mAh g−1, meanwhile, after 5000 charge and discharge cycles at a current density of 12C, the capacity still maintains 85 % of its initial capacity, which outperform the individual Bi- or SnSb-based materials. The superior electrochemical performances originate from the middle-entropy nature and layer structure of BiSnSb alloy, which can provide more channels for fast Na+ transport, and accommodate large volume changes. Besides, the activity energy and ions transport resistance of Na+ in different composites were evaluated. Furthermore, the full-cell coupled with NaNi1/3Fe1/3Mn1/3O2 as cathode was formed and a capacity retention of ∼80 % is realized in 100 cycles. The results show that the BixSnSb@C is a potential anode for fast-charging Na-ion batteries and could be used to guide the design of multi-component alloy-base anodes.
•Multi-step phase transition of sodiation is conducive to stress release.•Bi1Sn1Sb1@C anodes can deliver high rate performance up to 132C.•Ultralong cycle life up to 5000 cycle number is realized in the fabricated electrode.•The layered Bi-Sn-Sb phase promotes the Na+ transport kinetics in the anodes. |
---|---|
ISSN: | 2352-152X 2352-1538 |
DOI: | 10.1016/j.est.2024.112407 |