High-performance supercapacitor enabled by vacancy engineering of Fe2O3@reduced graphene oxide matrix

The construction of Fe2O3 with oxygen vacancy on the reduced graphene oxide matrix (Fe2O3-OV@rGO) is proposed under hydrothermal reduction environment for high-performance asymmetric supercapacitors. The obtained Fe2O3-OV@rGO displays strong mechanical property and ultra-light weight. The transmissi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy storage 2024-06, Vol.91, p.112174, Article 112174
Hauptverfasser: Xin, Guoxiang, Sun, Wei, Liu, Fei, She, Suhui, Song, Jinling, Zhang, Bangwen, Bao, Jinxiao, An, Junwei, Tian, Huiying, Meng, Xiangfeng, Wang, Zhiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The construction of Fe2O3 with oxygen vacancy on the reduced graphene oxide matrix (Fe2O3-OV@rGO) is proposed under hydrothermal reduction environment for high-performance asymmetric supercapacitors. The obtained Fe2O3-OV@rGO displays strong mechanical property and ultra-light weight. The transmission electron microscopy images of Fe2O3-OV@rGO present that Fe2O3 nanoparticles with the size of 30 nm are uniformly distributed on the rGO matrix. Cyclic voltammetry tests indicate that capacitance contribution is dominant relative to diffusion contribution. The Fe2O3-OV@rGO shows the specific capacitance of 1291.5 F·g−1 at 0.5 A·g−1 and capacitance retention of 72 % from 0.5 to 10 A·g−1. In-situ Raman spectra of Fe2O3-OV@rGO are recorded to trace OV concentration change, suggesting its excellent electrochemical reversibility. An asymmetric supercapacitor Fe2O3-OV@rGO||rGO exhibits an ultrahigh energy density of 115.6 Wh·kg−1 at a power density of 140 W·kg−1. A 94.7 % capacitive retention and a ∼ 100 % Coulombic efficiency remain after 20,000 cycles. Ideal supercapacitive behaviors of the Fe2O3-OV@rGO||rGO are attributed to the creation of OVs in the Fe2O3 lattice structure and the construction of conducting channels stemmed from the rGO. •Supercapacitor material is prepared by vacancy engineering of Fe2O3 on rGO matrix.•Electrochemical reaction kinetics and charge storage mechanism are investigated.•In-situ Raman spectra of Fe2O3-OV@rGO are recorded to trace OV concentration change.•Fe2O3-OV@rGO||rGO asymmetric supercapacitor shows high energy density.•Ideal behaviors are attributed to OV creation and conducting channel construction.
ISSN:2352-152X
2352-1538
DOI:10.1016/j.est.2024.112174