Synthesis and evaluation of green phase change materials for efficient air conditioning by tetrabutylphosphonium phosphate ionic semiclathrate hydrate
A tetrabutylammonium bromide (TBAB) hydrate is the only ionic semiclathrate hydrate that has been commercialized as a medium for efficient thermal energy storage targeting general air conditioning. However, TBAB is an environmental pollutant, while liquid water and ice that have been widely used as...
Gespeichert in:
Veröffentlicht in: | Journal of energy storage 2022-08, Vol.52, p.104801, Article 104801 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A tetrabutylammonium bromide (TBAB) hydrate is the only ionic semiclathrate hydrate that has been commercialized as a medium for efficient thermal energy storage targeting general air conditioning. However, TBAB is an environmental pollutant, while liquid water and ice that have been widely used as conventional media, also have difficulty in increasing the thermal energy storage density as well as the coefficient of performance (COP) of a refrigerator to form solid. In this study, a tetrabutylphosphonium phosphate ((TBP)3PO4) hydrate was proposed as an alternative green medium. The dissociation heat and the phase equilibrium temperature, which were both crucial factors to evaluate the thermal energy storage density, and COP was experimentally determined. It was found that the maximum dissociation heat was 154.1 ± 2.0 kJ・kg−1 at the mass fraction of 0.309. The highest phase equilibrium temperature was 10.0 °C at the mass fractions of 0.290, 0.299, and 0.309. The thermal energy storage density of (TBP)3PO4 hydrates was 3.7 times larger than that of water. (TBP)3PO4 hydrates increased the COP of a refrigerator to form solid by 42% as compared with ice, indicating the potential size-reduction of conventional devices with the decrease in the power consumption of a refrigerator. The effective balance between environmental protection and the system performance through (TBP)3PO4 hydrates was also discussed.
•The energy density of hydrate is 3.7 times larger than that of water.•The refrigerator to form hydrate has greater COP by 42% compared to ice.•The effective balance between environment protection and performance was discussed. |
---|---|
ISSN: | 2352-152X 2352-1538 |
DOI: | 10.1016/j.est.2022.104801 |