Construction of CoMoO4@Ni3S2 core-shell heterostructures nanorod arrays for high-performance supercapacitors

•CoMoO4 nanorods@Ni3S2 nanosheets core-shell heterostructures directly grows on Ni foam.•The morphology of CoMoO4@Ni3S2 core-shell heterostructures can be controlled by changing hydrothermal time.•The assembled asymmetric supercapacitor exhibits excellent electrochemical performance. The core-shell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy storage 2021-03, Vol.35, p.102319, Article 102319
Hauptverfasser: Wang, Tao, Ma, Weibing, Zhang, Yuxin, Guo, Jingdong, Li, Tingting, Wang, Shenghui, Yang, De’an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•CoMoO4 nanorods@Ni3S2 nanosheets core-shell heterostructures directly grows on Ni foam.•The morphology of CoMoO4@Ni3S2 core-shell heterostructures can be controlled by changing hydrothermal time.•The assembled asymmetric supercapacitor exhibits excellent electrochemical performance. The core-shell CoMoO4 nanorods@Ni3S2 nanosheets (CMO@NS) for supercapacitor were prepared by a facile two-step hydrothermal process accompanying with annealing treatment. The influence of hydrothermal time on structures and electrochemical properties was studied in detail. Benefiting from the synergism-enhanced action of CoMoO4 and Ni3S2 and the novel core-shell heterostructure of the composite, the prepared electrode exhibits excellent electrochemical performance. CMO@NS employed as positive electrode for supercapacitor exhibits excellent areal specific capacitance (11.02 F cm−2 at 5 mA cm−2), exceptional rate performance (70.8% retention, even increasing the current density to 30 mA cm−2) and enhanced cycle performance (57.7% retention rate after 3000 cycles). Furthermore, an asymmetric supercapacitor device was fabricated, which achieves an ultra-high energy density of 0.412 mWh cm−2 at the power density of 4 mW cm−2 and a great cycle life with 81.25% capacitance retention over 3000 cycles. Thus, the core-shell CMO@NS could be a hopeful candidate for practical supercapacitor electrode materials. [Display omitted]
ISSN:2352-152X
2352-1538
DOI:10.1016/j.est.2021.102319