Formation of lunar highlands anorthosites
•We report major and trace element contents of plagioclase in meteoritic anorthosites.•Simple LMO crystallization cannot derive REE contents in anorthositic plagioclase.•Plagioclase and mafic minerals in lunar anorthosites may not be in equilibrium.•Anorthosites are primordial crust metasomatized by...
Gespeichert in:
Veröffentlicht in: | Earth and planetary science letters 2020-04, Vol.536, p.116138, Article 116138 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •We report major and trace element contents of plagioclase in meteoritic anorthosites.•Simple LMO crystallization cannot derive REE contents in anorthositic plagioclase.•Plagioclase and mafic minerals in lunar anorthosites may not be in equilibrium.•Anorthosites are primordial crust metasomatized by KREEP and mantle-derived melts.
The lunar magma ocean (LMO) model was proposed after the discovery of anorthosite in Apollo 11 samples. However, the chemical and isotopic compositions of lunar anorthosites are not fully consistent with its LMO origin. We have analyzed major and trace elements in anorthositic clasts from ten lunar feldspathic meteorites, which are related to the solidification of the LMO. The plagioclase rare earth element (REE) abundances and patterns are not correlated with the Mg# of coexisting mafic minerals in anorthosites, implying that mafic minerals and plagioclase may not be in chemical equilibrium, consistent with their textural differences. The REE abundances in plagioclase range approximately fortyfold, which cannot be produced by fractional crystallization of a single magma. Combining plagioclase trace element data from Apollo and meteoritic anorthosites, we propose that plagioclases derived from the LMO floated to the surface to form the primordial crust, which then may have been metasomatized by incompatible-element-rich KREEP (potassium, rare earth element, phosphorus) melts and mantle-derived partial melts. The lunar anorthosites may represent this metasomatized crust rather than solely a derivative from the LMO. Furthermore, silicate melts similar to the metasomatic agents may also have melted the crust to form the Mg-suite rocks. This hypothesis is consistent with overlapping ranges of age and initial εNd between lunar anorthosites and Mg-suite rocks. These events are consistent with an overturn event of the cumulate mantle very early after primordial crust formation to produce the partial melts that metasomatized the crust. |
---|---|
ISSN: | 0012-821X 1385-013X |
DOI: | 10.1016/j.epsl.2020.116138 |