NosZI microbial community determined the potential of denitrification and nitrous oxide emission in river sediments of Qinghai-Tibetan Plateau

Denitrification in river sediments is the hotspot of nitrogen removal and nosZI gene is essential for reducing nitrous oxide (N2O) emissions. However, few studies tried to link nosZI communities with variations of denitrification rates in sediments along the high-elevation rivers. Here, we investiga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2022-11, Vol.214, p.114138, Article 114138
Hauptverfasser: Guo, Zixu, Su, Rui, Zeng, Jin, Wang, Shuren, Zhang, Danrong, Yu, Zhongbo, Wu, Qinglong L., Zhao, Dayong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Denitrification in river sediments is the hotspot of nitrogen removal and nosZI gene is essential for reducing nitrous oxide (N2O) emissions. However, few studies tried to link nosZI communities with variations of denitrification rates in sediments along the high-elevation rivers. Here, we investigated the spatial variation of potential denitrification rates of sediments along a section (hereafter YJ) of the middle reaches of the Yarlung Zangbo River in the Qinghai-Tibetan Plateau. We also used the real-time quantitative PCR (qPCR) and high-throughput sequencing techniques to evaluate the abundance and composition of nosZI-containing microbial groups. The influences of physicochemical factors and denitrifier communities on potential denitrification rates were further revealed through structural equation modeling. The obtained results indicated that potential denitrification rates and N2O/(N2O + N2) ratio in the sediments along YJ section were greatly different. Moreover, the alpha diversity and composition of nosZI-containing microbial community in river sediments differed remarkably, mainly driven by the ammonia nitrogen (NH4+-N), organic matter (OM) and pH in sediments. The relative abundances of Zoogloeaceae, Oxalobacteraceae, Rhodospirillaceae and Bradyrhizobiaceae significantly differed among five groups (P 
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2022.114138