Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density
Seasonal variations (SVs) affect the population density (PD), fate, and fitness of pathogens in environmental water resources and the public health impacts. Therefore, this study is aimed at applying machine learning intelligence (MLI) to predict the impacts of SVs on P. shigelloides population dens...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-01, Vol.317, p.120734, Article 120734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Seasonal variations (SVs) affect the population density (PD), fate, and fitness of pathogens in environmental water resources and the public health impacts. Therefore, this study is aimed at applying machine learning intelligence (MLI) to predict the impacts of SVs on P. shigelloides population density (PDP) in the aquatic milieu. Physicochemical events (PEs) and PDP from three rivers acquired via standard microbiological and instrumental techniques across seasons were fitted to MLI algorithms (linear regression (LR), multiple linear regression (MR), random forest (RF), gradient boosted machine (GBM), neural network (NN), K-nearest neighbour (KNN), boosted regression tree (BRT), extreme gradient boosting (XGB) regression, support vector regression (SVR), decision tree regression (DTR), M5 pruned regression (M5P), artificial neural network (ANN) regression (with one 10-node hidden layer (ANN10), two 6- and 4-node hidden layers (ANN64), and two 5- and 5-node hidden layers (ANN55)), and elastic net regression (ENR)) to assess the implications of the SVs of PEs on aquatic PDP. The results showed that SVs significantly influenced PDP and PEs in the water (p |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2022.120734 |