Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs

Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2023-01, Vol.317, p.120713, Article 120713
Hauptverfasser: Raoelison, Onja D., Valenca, Renan, Lee, Allison, Karim, Samiha, Webster, Jackson P., Poulin, Brett A., Mohanty, Sanjay K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality of surface waters. This study aims to analyze reported pre- and post-fire water quality data to inform the data reporting and highlight research opportunities. A comparison of the pre-and post-fire water quality data from 44 studies reveals that wildfire could increase the concentration of many pollutants by two orders of magnitude. However, the concentration increase is sensitive to when the sample was taken after the wildfire, the wildfire burned area, discharge rate in the surface water bodies where samples were collected, and pollutant type. Increases in burned areas disproportionally increased total suspended solids (TSS) concentration, indicating TSS concentration is dependent on the source area. Increases in surface water flow up to 10 m3 s−1 increased TSS concentration but any further increase in flow rate decreased TSS concentration, potentially due to dilution. Nutrients and suspended solids concentrations increase within a year after the wildfire, whereas peaks for heavy metals occur after 1–2 years of wildfire, indicating a delay in the leaching of heavy metals compared to nutrients from wildfire-affected areas. The concentration of polycyclic aromatic hydrocarbons (PAHs) was greatest within a year post-fire but did not exceed the surface water quality limits. The analysis also revealed inconsistency in the existing sampling protocols and provides a guideline for a modified protocol along with highlighting new research opportunities. Overall, this study underlines the need for consistent reporting of post-fire water quality data along with environmental factors that could affect the data so that the post-fire water quality can be assessed or compared between studies. [Display omitted] •Post-fire water quality is sensitive to sampling time, burn area, and flow rate.•Post-fire pollutant concentrations can increase by 3 orders of magnitude.•Peaks in TSS and nutrients arrived soon after wildfires, heavy metals peaked after 1–2 years.•Most studies did not report first-flush concentration after a wildfire.•Consistency in data collection and reporting could better predict post-fire water quality.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2022.120713