Efficient and selective capture of uranium by polyethyleneimine-modified chitosan composite microspheres from radioactive nuclear waste
Uranium extraction from radioactive nuclear waste is vital for sustainable energy supply and ecological security. Herein, a polyethyleneimine-chitosan composite microspheres n-PEI/ECH-CTS (n = 0.1, 0.2, 0.3, 0.4, 0.5) were synthetized for efficient and selective uranium adsorption. The prepared chit...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2023-01, Vol.316, p.120550, Article 120550 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uranium extraction from radioactive nuclear waste is vital for sustainable energy supply and ecological security. Herein, a polyethyleneimine-chitosan composite microspheres n-PEI/ECH-CTS (n = 0.1, 0.2, 0.3, 0.4, 0.5) were synthetized for efficient and selective uranium adsorption. The prepared chitosan microspheres with uniform size, uniform dispersion and good mechanical strength combine cost-effectiveness and environmental benefits. The 0.4-PEI/ECH-CTS exhibits the highest adsorption capacity of 380.65 mg g−1 within only 4 h due to high nitrogen content of 6.57 mol kg−1. The DFT calculations confirms that the optimal coordination mode of UO22+ and 0.4-PEI/ECH-CTS is one UO22+ chelated with two –NH2 from two adsorption units, respectively. Adsorption efficiency of U(VI) from simulated nuclear wastewater achieves to 100%, and the Kd value is up to 1.1 × 104 mL g−1, which is 1.7 × 104–6.1 × 104 times that of coexisting ions. The CU(VI) reduces in simulated wastewater from 10.98 mg L−1 to 1 μg L−1, which is well below the US Environmental Protection Agency uranium limits for drinking water (30 μg L−1). Besides, 0.4-PEI/ECH-CTS still maintains above 95% adsorption efficiency after seven cycles. In short, the 0.4-PEI/ECH-CTS microspheres integrate high performance, practicality and cost-effectiveness, which has great advantages in practical industrial applications.
[Display omitted]
•A PEI-modified CTS microsphere with particle size of 90–110 μm is prepared.•The KdU(VI) is 1.7 × 104–6.1 × 104 times that of Ni, Co, Gd, Pr, Ce and La.•0.4-PEI/ECH-CTS is still above 95% adsorption efficiency after seven cycles.•Reduce the CU(VI) from 11 mg L-1 to 1 μg L-1 to meet drinking water standard.•The optimal coordination mode is one UO22+ chelated with two -NH2. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2022.120550 |