Projected near-future ocean acidification decreases mercury toxicity in marine copepods
Here, we examined the combinational effect of ocean acidification (OA) and mercury (Hg) in the planktonic copepod Pseudodiaptomus annandalei in cross-factored response to different pCO2 (400, 800 μatm) and Hg (control, 1.0 and 2.5 μg/L) exposures for three generations (F0–F2), followed by single-gen...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2021-09, Vol.284, p.117140, Article 117140 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we examined the combinational effect of ocean acidification (OA) and mercury (Hg) in the planktonic copepod Pseudodiaptomus annandalei in cross-factored response to different pCO2 (400, 800 μatm) and Hg (control, 1.0 and 2.5 μg/L) exposures for three generations (F0–F2), followed by single-generation recovery (F3) under clean condition. Several phenotypic traits and Hg accumulation were analyzed for F0–F3. Furthermore, shotgun-based quantitative proteomics was performed for F0 and F2. Our results showed that OA insignificantly influenced the traits. During F0–F2, combined exposure reduced Hg accumulation as compared with the counterpart Hg treatment, supporting the mitigating effect of OA on Hg toxicity in copepods. Proteomics analysis indicated that the copepods probably increased energy production/storage and stress response to ensure physiological resilience against OA. However, Hg induced many toxic events (e.g., energy depletion and degenerated organomorphogenesis/embryogenesis for F0; cell cycle arrest and detrimental stress-defense for F2), which were translated to the population-level adverse outcome, i.e., compromised growth/reproduction. Particularly, compensatory proteome response was identified (e.g., increased immune defense for F0; energetic compensation and enhanced embryogenesis for F2), accounting for a negative interaction between OA and Hg. Together, this study provides the molecular mechanisms behind the effects of OA and Hg pollution in marine copepods.
[Display omitted]
•Copepods were subjected to OA and Hg pollution under multigenerational exposure.•OA reduced Hg accumulation and its toxicity to the growth/reproduction in copepods.•Copepod proteome enabled its physiological resilience to decreasing pH.•Proteomics indicated many toxic events, ensuring Hg toxicity to the copepod’s traits.•Proteome compensation was accounting for the alleviative effect of OA on Hg toxicity. |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2021.117140 |