Generation of spikes in ultrafine particle emissions from a gasoline direct injection vehicle during on-road emission tests

This study explores the generation of ultrafine particle emissions, measured in particle number (PN), based on a portable emissions measurement system (PEMS) in the City of Toronto between October and December 2019. Two driving routes were designed to include busy arterial roads and highways. All me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2020-12, Vol.267, p.115695, Article 115695
Hauptverfasser: Xu, Junshi, Tu, Ran, Wang, An, Zhai, Zhiqiang, Hatzopoulou, Marianne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study explores the generation of ultrafine particle emissions, measured in particle number (PN), based on a portable emissions measurement system (PEMS) in the City of Toronto between October and December 2019. Two driving routes were designed to include busy arterial roads and highways. All measurements were conducted between 10 a.m. and 4 p.m. Altogether, emissions from 31 drives were collected, leading to approximately 200,000 s of data. A spike detection algorithm was employed to isolate PN spikes in time series data. A sensitivity analysis was also conducted to identify the most optimum method for spike detection. The results indicate that the average emission rate during a PN spike is approximately 8 times the emission rate along the rest of the drive. In each test trip, about 25% of the duration was attributed to spike events, contributing 75% of total PN emissions. A Pearson correlation of 0.45 was estimated between the number of PN spikes and the number of sharp accelerations (above 8.5 km/h/s). The Pearson correlation between the occurrence of high engine torque (above 65.0 Nm) and the number of PN spikes was estimated at 0.80. The number of PN spikes was highest on arterial roads where the vehicle speed was relatively low, but with high variability, and including a high number of sharp accelerations. This pattern of UFP emissions leads to high UFP concentrations along arterial roads in the inner city core. [Display omitted] •PN spikes comprised 25% of a test duration and contributed 75% of the emissions.•The emission rate during a PN spike was 8 times the rate of the rest of the drive.•PN spikes occur most frequently on arterial roads and expressway ramps.•High PN emission episodes were found to coincide with high acceleration events.•A high correlation (r = 0.80) was observed between PN spikes and high torque values.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2020.115695