The role of PFOS on triclosan toxicity to two model freshwater organisms
Surface-active substances may enhance the bioavailability of certain pollutants by modifying the permeability of cell membranes. However, they could also interact in a positive manner by increasing toxicity to aquatic organisms. A comparative effects assessment of waterborne exposure to triclosan (T...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2020-08, Vol.263 (Pt A), p.114604, Article 114604 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface-active substances may enhance the bioavailability of certain pollutants by modifying the permeability of cell membranes. However, they could also interact in a positive manner by increasing toxicity to aquatic organisms. A comparative effects assessment of waterborne exposure to triclosan (TCS) alone vs. combined with perfluorooctanesulfonic acid (PFOS) was herein investigated in daphnids (Daphnia magna) and medaka (Oryzias latipes) early life stages (ELS) using a battery of non-invasive behavioral, physiological and anatomical endpoints. Additionally, TCS bioaccumulation was evaluated in medaka embryos to help discern differences in effects caused by either, changes in TCS permeability or by a positive interaction with PFOS. The TCS analytical measurements in the medaka ELS exposure media revealed fast dissipation with half-lives < 12 h. The D. magna immobilization and feeding inhibition assays suggested an increased response when TCS (≥200 and 37.50 μg/L, respectively) was co-exposed with PFOS. Concentrations |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2020.114604 |