Stabilization process and potential of agro-industrial waste on Pb-Contaminated soil around Pb–Zn mining

Sawdust wastes were used as precursors to prepare adsorbents by combustion and pyrolysis for experimental and mechanism studies and determine the potential of biomass extracted from agro-industrial residues for Pb-polluted soil remediation. Pot experiments were conducted on contaminated soils near P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2020-05, Vol.260, p.114069, Article 114069
Hauptverfasser: Zhang, Yan, Wang, Xuemei, Ji, Hongbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sawdust wastes were used as precursors to prepare adsorbents by combustion and pyrolysis for experimental and mechanism studies and determine the potential of biomass extracted from agro-industrial residues for Pb-polluted soil remediation. Pot experiments were conducted on contaminated soils near Pb–Zn mining with sawdust ash (SA) and sawdust biochar (SB) in different proportions and dosage ratios. Studies have indicated that the application of biomass materials can enhance the adsorption, complexation and precipitation of Pb cations in soil and reduce the mobility of Pb. The concentrations of SPLP-Pb and DTPA-extractable Pb in amended soils were the lowest under 1% 1:2 and 5% 1:1 treatment, respectively. Results of fraction extraction and XANES analysis showed that the materials change the main forms of Pb in soil. Moreover, the binding behavior of Pb with organic matter increases the proportion of Pb (Ac)2, leading to the transformation of high toxicity Pb-compounds into precipitates and complexes. The remediation methods of 2% 1:2 and 5% 1:2 were better than those of other methods in stabilizing Pb in soil. This study indicated that heat-treated sawdust can be used for Pb-polluted soil remediation, which is a type of environmental remediation measure with considerable ecological potential. [Display omitted] •Mixed material with high biochar content had better stability of Pb in soil.•Bioavailability fraction of Pb was transformed to residual fraction.•Addition of ash and biochar with 1:2 ratio increased the proportion of Pb(Ac)2.•PbSO4, PbO and Pb(Ac)2 are important components of Pb in soil.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2020.114069