Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish

Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2020-06, Vol.261, p.114060, Article 114060
Hauptverfasser: Naderi, Mohammad, Salahinejad, Arash, Attaran, Anoosha, Chivers, Douglas P., Niyogi, Som
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway. [Display omitted] •E2 and the lowest BPS concentration improved OP memory.•Exposure to 10 and 30 μg/L of BPS impaired OR, OP, and SR memories.•The BPS effects on memory are mediated through the glutamatergic/ERK/CREB pathway.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2020.114060