Understanding the influence of glyphosate on the structure and function of freshwater microbial community in a microcosm

Glyphosate, one of the most popular herbicides, has become a prominent aquatic contaminant because of its huge usage. The eco-safety of glyphosate is still in controversy, and it is inconclusive how glyphosate influences aquatic microbial communities. In the present study, the effects of glyphosate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2020-05, Vol.260, p.114012, Article 114012
Hauptverfasser: Lu, Tao, Xu, Nuohan, Zhang, Qi, Zhang, Zhenyan, Debognies, Andries, Zhou, Zhigao, Sun, Liwei, Qian, Haifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glyphosate, one of the most popular herbicides, has become a prominent aquatic contaminant because of its huge usage. The eco-safety of glyphosate is still in controversy, and it is inconclusive how glyphosate influences aquatic microbial communities. In the present study, the effects of glyphosate on the structure and function of microbial communities in a freshwater microcosm were investigated. 16S/18S rRNA gene sequencing results showed that glyphosate treatment (2.5 mg L−1, 15 days) did not significantly alter the physical and chemical condition of the microcosm or the composition of the main species in the community, but metatranscriptomic analyses indicated that the transcriptions of some cyanobacteria were significantly influenced by glyphosate. The microbial community enhanced the gene expression in pathways related to translation, secondary metabolites biosynthesis, transport and catabolism to potentially withstand glyphosate contamination. In the low phosphorus (P) environment, a common cyanobacterium, Synechococcus, plays a special role by utilizing glyphosate as P source and thus reducing its toxicity to other microbes, such as Pseudanabaena. In general, addition of glyphosate in our artificial microcosms did not strongly affect the aquatic microbial community composition but did alter the community’s transcription levels, which might be potentially explained by that some microbes could alleviate glyphosate’s toxicity by utilizing glyphosate as a P source. [Display omitted] •Glyphosate (2.5 mg L−1) did not significantly alter the microbial community structure.•The transcriptions of microbial community were influenced by glyphosate.•Genes in many metabolism pathways were over-expressed under glyphosate stress.•Some cyanobacteria like Synechococcus could utilize glyphosate as P source.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2020.114012