Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand
The transport and retention of nanoplastics (NP, 200 nm nanopolystyrene) functionalized with surface carboxyl (NPC), sulfonic (NPS), low-density amino (negatively charged, NPA−), and high-density amino (positively charged, NPA+) groups in seawater-saturated sand with/without humic acid were examined...
Gespeichert in:
Veröffentlicht in: | Environmental pollution (1987) 2019-12, Vol.255 (Pt 1), p.113177, Article 113177 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The transport and retention of nanoplastics (NP, 200 nm nanopolystyrene) functionalized with surface carboxyl (NPC), sulfonic (NPS), low-density amino (negatively charged, NPA−), and high-density amino (positively charged, NPA+) groups in seawater-saturated sand with/without humic acid were examined to explore the role of NP surface functionalities. The mass percentages of NP recovered from the effluent (Meff) with a salinity of 35 practical salinity units (PSU) were ranked as follows: NPC (19.69%) > NPS (16.37%) > NPA+ (13.33%) > NPA− (9.78%). The homoaggregation of NPS and NPA− was observed in seawater. The transport of NPA− exhibited a ripening phenomenon (i.e., a decrease in the transport rate with time) due to the high attraction of NP with previously deposited NP, whereas monodispersed NPA+ presented a low Meff value because of the electrostatic attraction between NPA+ and negatively charged sand. Retention experiments showed that the majority of NPC, NPS and NPA+ accumulated in a monolayer on the sand surface, whereas NPA− accumulated in multiple layers. Suwannee River humic acid (SRHA) could remarkably improve the transportability of NPC, NPS, and NPA− by increasing steric repulsion. The strong attraction between NPA+ and the deposited NPA+ in the presence of SRHA triggered the weak ripening phenomenon. As seawater salinity decreased from 35 PSU to 3.5 PSU, the increase in electrostatic repulsion of NP-NP and NP-sand enhanced the transport of NPC, NPS, and NPA−, and the ripening of NPA− breakthrough curves disappeared. In deionized water, NPC, NPS, and NPA− achieved complete column breakthrough because the electrostatic repulsion between NP and sand intensified. However, the Meff values of NPA+ in 3.5 PSU seawater and deionized water presented limited increments of 15.49% and 23.67%, respectively. These results indicated that the fate of NP in sandy marine environments were strongly affected by NP surface functionalities, seawater salinity, and coexisting SRHA.
[Display omitted]
•The transport of nanoplastics (NP) depended on their surface functionalities.•NP with carboxyl (NPC), sulfonic (NPS), low (NPA−) and high amino (NPA+) were studied.•Humic acid improved the transport of NPC, NPS and NPA− in seawater-saturated sand.•Humic acid inhibited the transport of NPA+ in seawater-saturated sand.•Decline of salinity accelerated the transport of NPC, NPS and NPA− except for NPA+.
Capsule: Surface functionalities of nanoplastics (NP) strongly influenced |
---|---|
ISSN: | 0269-7491 1873-6424 |
DOI: | 10.1016/j.envpol.2019.113177 |