Autonomous intelligent control of earth pressure balance shield machine based on deep reinforcement learning

In order to reduce the construction risk caused by human operation error and improve the geological adaptive ability of the shield machine, an autonomous intelligent control method is proposed for shield machine within the framework of interaction–judgment–decision based on Deep Deterministic Policy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence 2023-10, Vol.125, p.106702, Article 106702
Hauptverfasser: Liu, Xuanyu, Zhang, Wenshuai, Shao, Cheng, Wang, Yudong, Cong, Qiumei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to reduce the construction risk caused by human operation error and improve the geological adaptive ability of the shield machine, an autonomous intelligent control method is proposed for shield machine within the framework of interaction–judgment–decision based on Deep Deterministic Policy Gradient (DDPG) deep reinforcement learning in this study. Due to the strong nonlinear relationship between the shield machine's tunneling parameters, this research builds a deep reinforcement learning environment using mechanism model of sealed cabin pressure. DDPG agent model of the shield machine is established to replace the shield machine to interact and train with the geological environment. By minimizing the difference between the target pressure setting value and the sealed cabin pressure value, the dynamic balance between the sealed cabin pressure and the pressure on the excavation surface is realized, and the best strategy is obtained. Through real-time interaction with the geological environment, the method in this paper can dynamically adjust the tunneling parameters, accurately control the sealed cabin pressure, and has a strong geological adaptive ability. By realizing the intelligent decision-making of the tunneling parameters, it greatly improves the independent decision-making ability of the shield machine system, reduces the inaccuracy of human operation, and provides an effective guarantee for the efficient and safe operation of the shield machine. This study applies deep reinforcement learning technology to the control field of earth pressure balance shield machine, promotes AI technology, and provides a new idea for the development of AI construction technology in engineering field.
ISSN:0952-1976
DOI:10.1016/j.engappai.2023.106702