Experimental and simulation investigation on the different iron content beta zeolite for controlling the cold-start hydrocarbon emission from a gasoline vehicle

In this work, cold start experiments results showed that the HC catcher coated with 1% iron content is more effective than that with 3% iron content, the peak HC emission is reduced from 0.0029 g to 0.0018 g. To further reveal the reasons for the effects of BEA zeolite molecular sieves with differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2024-05, Vol.294, p.130954, Article 130954
Hauptverfasser: Han, Dandan, E, Jiaqiang, Feng, Changling, Han, Chang, Kou, Chuanfu, Tan, Yan, Peng, Yanchun, Wei, Lingyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, cold start experiments results showed that the HC catcher coated with 1% iron content is more effective than that with 3% iron content, the peak HC emission is reduced from 0.0029 g to 0.0018 g. To further reveal the reasons for the effects of BEA zeolite molecular sieves with different iron contents on HC adsorption, the measured HC emission components (butene, propene, ethene, acetaldehyde, and acetylene) were used as HC simulation molecules for molecular simulation experiments, the simulation results showed that, for single-component adsorption, the adsorption effect of beta zeolite molecular sieves with high iron content was better; for multi-component adsorption, acetaldehyde and butene maintained higher adsorption amounts, and the adsorption of acetaldehyde increased with the increase of the iron content in the beta zeolite molecular sieves; in the presence of water and CO2, the effect of water is greater than that of carbon dioxide, and its effect increases with the increase of iron content in beta zeolite molecular sieves. The maximum adsorption capacity of water can reach 4.5mmol/zeolite, which seriously affected the adsorption of HC molecules. Properly reducing the iron content of BEA zeolite molecular sieve is useful for enhancing its adsorption effect on the main HC simulated molecules. •Controlling the HC emission of the HC catcher with iron content was compared.•HC emission during cold start was investigated by experiments and simulations.•Influence characteristics for controlling the HC emission efficiency were gotten.
ISSN:0360-5442
DOI:10.1016/j.energy.2024.130954