Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition

Wind speed plays a pivotal role in ensuring the stability of power grid operations. However, the inherent high volatility and non-stationarity of wind patterns pose significant challenges to achieving accurate predictions. To tackle this issue and enhance the interpretability of existing wind speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2024-05, Vol.294, p.130782, Article 130782
Hauptverfasser: Wu, Binrong, Yu, Sihao, Peng, Lu, Wang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wind speed plays a pivotal role in ensuring the stability of power grid operations. However, the inherent high volatility and non-stationarity of wind patterns pose significant challenges to achieving accurate predictions. To tackle this issue and enhance the interpretability of existing wind speed prediction models, this study proposes an innovative short-term wind speed prediction model that combines two-stage decomposition, meteorological data feature engineering, adaptive differential evolution with optional external archive (JADE) algorithm, and temporal fusion transformers (TFT). To begin, the wind speed data is subjected to decomposition using improved complete ensemble empirical mode decomposition with adaptive noise (IEEMD), yielding multiple eigenmode functions. Subsequently, the nonlinear decomposition subsequence undergoes further decomposition into multiple submodes via empirical wavelet transform (EWT), followed by the careful screening of nonlinear quadratic decomposition submodes. Additionally, meteorological features are ingeniously reconstructed into combined and statistical meteorological features, enhancing the effectiveness of input features. Next, the hyperparameters of the TFT are meticulously optimized using the powerful JADE algorithm. Empirical results unequivocally demonstrate that the IEEMD-EWT-JADE-TFT model achieves remarkably high prediction accuracy. Meanwhile, this interpretative experimental process and its results chart a novel path for decision-makers seeking reliable wind speed forecasting processes and outcomes. •A scientific feature engineering method for meteorological data is proposed.•An effective linear-nonlinear two-stage decomposition method is introduced.•An explainable wind speed forecasting methodology named ICEEMDAN-EWT-JADE-TFT is proposed.•Impacts of input variables are analyzed by TFT's interpretability capability.
ISSN:0360-5442
DOI:10.1016/j.energy.2024.130782