Optimal configuration of double carbon energy system considering climate change

How to achieve the “double carbon” goal in energy systems has been the concern of governments. Integrated energy system (IES) is affected by climate change during his operation, in order to study the impact of climate change on IES and achieve the “double carbon” goal in energy systems, this paper p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2023-11, Vol.283, p.129188, Article 129188
Hauptverfasser: Zhang, Zhonglian, Yang, Xiaohui, Yang, Li, Wang, Zhaojun, Huang, Zezhong, Wang, Xiaopeng, Mei, Linghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How to achieve the “double carbon” goal in energy systems has been the concern of governments. Integrated energy system (IES) is affected by climate change during his operation, in order to study the impact of climate change on IES and achieve the “double carbon” goal in energy systems, this paper proposes an integrated machine learning(IML) to forecast the long-term load, then investigates IES costs and carbon emissions in relation to climate, followed by the establishment of carbon peak energy system(CPES) and carbon neutral energy system(CNES), finally the honey badger algorithm is used to optimize the configuration of CPES and CNES. The results show that: IML can accurately make load forecasts. Under climate change, changes in load reduce the cost and carbon emissions of IES, and changes in equipment efficiency increase the cost and carbon emissions of IES. When both are considered, the cost and carbon emissions of IES increase by 1.18% and 0.92% per decade respectively. The costs of CPES and CNES increase by 0.93% and 1% respectively for every 10 years earlier than the year of achievement. To meet China’s “double carbon” goal, CPES and CNES need to increase their costs by 1.97% and 2% respectively. •Integrated machine learning proposed for long-term load forecasting.•Studied the impact of system equipment efficiency and load with climate change.•Proposing carbon peaking energy system to achieve the carbon peak goal.•Proposed carbon-neutral energy system to achieve carbon neutrality goal.•The increased costs of achieving carbon peak and carbon neutral were studied.
ISSN:0360-5442
DOI:10.1016/j.energy.2023.129188