Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems
Recent European Directives have promoted Renewable Energy Communities as pivotal drivers to achieve energy and environmental European targets. In this context, the aim of this paper is to assess the energy and environmental feasibility of a Renewable Energy Community located in Northern Italy. The a...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2023-11, Vol.282, p.128348, Article 128348 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent European Directives have promoted Renewable Energy Communities as pivotal drivers to achieve energy and environmental European targets. In this context, the aim of this paper is to assess the energy and environmental feasibility of a Renewable Energy Community located in Northern Italy. The analysis is conducted starting from the real electricity consumption and thermal energy requests data made available from different datasets. After the analysis and processing of input data, the size and technical characteristics of the devices installed at the Renewable Energy Community are defined. A biomass-based cogenerator, a small hydro power plant, and distributed photovoltaic systems have been selected, thereby different layouts are considered and analysed, in terms of cogenerator operating mode and photovoltaic systems peak power. The results show that, in the best scenario, the annual renewable electricity used to satisfy electric load increases by 20.3% and about 68.1% of the total thermo-electric requests are met through biomass utilization. The bi-directional interactions with power grid are reduced from 60.6% to 51.7%. The thermal and electric sharing within the community ensures a decrease of carbon dioxide emissions up to 18.5%.
•Analysis of energy systems serving district heating network at Tirano municipality.•Characterization of thermal and electric loads with 1-h granularity.•Modelling and simulation of most suitable Renewable Energy Community layouts.•Definition and evaluation of energy and environmental key performance indicators. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2023.128348 |