Performance and sustainability assessment of PEMFC/solar-driven CCP systems with different energy storage devices

The rise in cloud computing has promoted the rapid development of the data center industry. Proton exchange membrane fuel cells have high energy conversion efficiency and the potential to be applied in data center applications. In this study, by considering different energy storage devices and multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2023-09, Vol.278, p.127863, Article 127863
Hauptverfasser: Cai, Shanshan, Wang, Wenli, Zou, Yuqi, Li, Song, Tu, Zhengkai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rise in cloud computing has promoted the rapid development of the data center industry. Proton exchange membrane fuel cells have high energy conversion efficiency and the potential to be applied in data center applications. In this study, by considering different energy storage devices and multienergy complementarity, four types of proton exchange membrane fuel cell-driven cooling-power systems were designed for data center applications. The effects of different types of energy storage devices and combination of solar energy on the operation characteristics were systematically analyzed. The results indicate that among the four cooling-power systems, the one with heat storage and solar thermal collector provides the best matching between cooling/power supplies and demands. The systems with a heat storage device consumed more hydrogen (3.6%) than those with a power storage device because of the larger requirement of heat (3.8%) and higher current density in the proton exchange membrane fuel cell. Results of emergy analysis show that the cooling-power system with power storage and solar thermal collector reached a maximum environmental sustainability index of 57.610 and a minimum environmental load ratio of 0.018, which imply strong sustainability potential while releasing the lowest pressure to the environment compared to the other systems. •Four types of PEM fuel cell-driven cooling-power systems are designed for data center applications.•Various energy regulation strategies are established for different types of cooling-power systems.•The impacts of different storage devices and multienergy complementary are systematically analyzed.•The emergy analysis is applied to evaluate sustainability related potentials and select optimal system.
ISSN:0360-5442
DOI:10.1016/j.energy.2023.127863