A comprehensive study on application properties of diesel blends with propanol, butanol, isobutanol, pentanol, hexanol, octanol and dodecanol

In this study, the properties of diesel - alcohol blends are investigated. The alcohols used for blending in this study (1-propanol, 1-butanol, isobutanol, 1-pentanol, 1-hexanol, 1-octanol and 1-dodecanol) can be produced from biomass or have a high potential to be produced from biomass. The blends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2023-01, Vol.262, p.125430, Article 125430
Hauptverfasser: Konjević, Lucija, Racar, Marko, Ilinčić, Petar, Faraguna, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the properties of diesel - alcohol blends are investigated. The alcohols used for blending in this study (1-propanol, 1-butanol, isobutanol, 1-pentanol, 1-hexanol, 1-octanol and 1-dodecanol) can be produced from biomass or have a high potential to be produced from biomass. The blends were evaluated using the properties specified in the EN 590 standard for diesel automotive fuels (density, viscosity, flash point, distillation properties, cold filter plugging point (CFPP), pour point (PP) and lubricity) and with FTIR-ATR, differential scanning calorimetry and surface tension to gain more insight on the blend properties. All of the 5 and 10 vol% blends (except 10 vol% 1-propanol) met the requirements of EN 590 in terms of density, viscosity, distillation properties, CFPP, PP and lubricity. The 1-pentanol and 1-octanol blends with diesel were tested in a compression ignition engine to determine the influence on engine performance and exhaust emissions (NOx, HC and CO2). Pentanol and octanol blends with diesel up to an alcohol content of 10 vol% can be used without modification as a substitute for diesel in existing engines, as they meet the requirements of EN590 and have a positive effect on engine performance and exhaust emissions. [Display omitted] •Evaluation of seven higher alcohol-diesel blends according to EN 590.•Analysis of alcohol-diesel blends from 5 to 30 vol% of alcohol.•The surface tension of blends is similar or lower than that of diesel.•Alcohol diesel blends show a reduction in CO2 emissions.
ISSN:0360-5442
DOI:10.1016/j.energy.2022.125430