Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries
Hydrogen is used in the petroleum industry to upgrade crude oil in refineries or as a chemical agent to produce ammonia, methanol and other products. It is mainly supplied by conventional production methods based on fossil fuels. Solar-based hydrogen production is a potentially advantageous option t...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2020-10, Vol.208, p.118347, Article 118347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen is used in the petroleum industry to upgrade crude oil in refineries or as a chemical agent to produce ammonia, methanol and other products. It is mainly supplied by conventional production methods based on fossil fuels. Solar-based hydrogen production is a potentially advantageous option to the problems of climate change and depletion of conventional fuel supplies. Four hydrogen production pathways including steam methane reforming, coal gasification, photovoltaic and solar thermal electrolysis are considered in this study. This paper investigates solar hydrogen potential in terms of cost and emissions as a replacement for conventional methods to provide the hydrogen required in oil and gas industries. GHG abatement costs are evaluated to compare the proposed methods with a reference method. As steam methane reforming is the most common method used in the petroleum industry, it is considered as the reference method in this study. Our results show that the GHG abatement costs are $0.786/kg CO2 and $1.37/kg CO2 for PV and solar thermal electrolysis, respectively. An uncertainty analysis is also conducted to assess the effects of variations of different parameters on the results.
•Solar-based hydrogen production methods are investigated.•Economic and life cycle assessments are performed.•Abatement costs are calculated to compare the proposed methods with the conventional fossil-based method. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2020.118347 |