Boosting the output power of PEM fuel cells by identifying best-operating conditions

•Experimental work have been done to obtain a data set.•ANSYS software has been build to simulate the performance of the PEMFC.•Fuzzy logic is applied to create an accurate model of PEMFC.•RSM is used to simulate the cell performance and compared with fuzzy model.•PSO algorithm was utilised to ident...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2022-10, Vol.270, p.116205, Article 116205
Hauptverfasser: Wilberforce, Tabbi, Olabi, A.G., Rezk, Hegazy, Abdelaziz, Almoataz Y., Abdelkareem, Mohammad Ali, Sayed, Enas Taha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Experimental work have been done to obtain a data set.•ANSYS software has been build to simulate the performance of the PEMFC.•Fuzzy logic is applied to create an accurate model of PEMFC.•RSM is used to simulate the cell performance and compared with fuzzy model.•PSO algorithm was utilised to identify the best parameters for the cell. Voltage, as well as current from proton exchange membrane fuel cells (PEMFCs), is reliant on various working and structural parameters, such as operating pressure, temperature, humidity, and membrane thickness. Optimizing such operating and structural parameters will significantly improve the cell's power output. Therefore, the primary goal of the investigation is to determine the best condition to boost the output power of PEMFCs. Firstly, experimental work has been done to obtain a data set. ANSYS software has been built and used to simulate the input–output characteristics of the PEMFC at different operating and structural parameters. Secondly, fuzzy logic is applied to create an accurate model of PEMFC with the aid of generated data sets obtained from ANSYS. Furthermore, response surface methodology (RSM) is also used to simulate the cell performance, and the results were compared with those obtained by the fuzzy model. Finally, the particle swarm optimization (PSO) algorithm was utilised to identify the best parameters for the cell. During the optimization process, the operating pressure, temperature, humidity, and membrane thickness are used as the design variables, whereas the output power of PEMFC is the objective function that needs to be maximized. The main finding proved the dominance of the combination of fuzzy modelling coupled with PSO. The output power increased by 5.26 % and 9.38% compared with the RSM and the measured data, respectively.
ISSN:0196-8904
1879-2227
DOI:10.1016/j.enconman.2022.116205