Mitigation of urban particulate pollution using lightweight green roof system

As the global population becomes more concentrated in urban environments, higher numbers of people will be exposed to urban air pollution. The environmental and human health benefits of green roofs are widely recognized. The aim of this paper is to promote green roofs as an effective passive techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2023-08, Vol.293, p.113203, Article 113203
Hauptverfasser: Kostadinović, Danka, Jovanović, Marina, Bakić, Vukman, Stepanić, Nenad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the global population becomes more concentrated in urban environments, higher numbers of people will be exposed to urban air pollution. The environmental and human health benefits of green roofs are widely recognized. The aim of this paper is to promote green roofs as an effective passive technique for pollution mitigation and adaptation to climate change. During the heating season, the ambient concentrations of PM1, PM2.5, and PM10 were measured above a green roof and a reference roof on a school building, located in New Belgrade, the second-most populous municipality and business center of Serbia’s largest city. The percent reduction of PM10, PM2.5 and PM1, in January 2020, above the green roof compared to the reference roof was 7%, 16.6%, and 17.6%, respectively. The results show that lightweight green roof improve air quality in terms of PM concentrations for all months considered. In this paper, correlation analysis and the use of Pearson’s coefficient were used in the process of analysis to determine the relationship between PM10, PM2.5, PM1, and ambient parameters: relative humidity, ambient temperature, and wind speed. It was found that the statistical correlation expressed by the Pearson coefficient between all PM particles and wind speed was statistically significant in all observed months except September. Also, the degree of significance of the correlation between PM particles and humidity and temperature of ambient air varies by month.
ISSN:0378-7788
DOI:10.1016/j.enbuild.2023.113203