Study on carbonate ester and ether-based electrolytes and hard carbon anodes interfaces for sodium-ion batteries
The hard carbon (HC) is the key anode materials for sodium ion batteries. While the electrolyte and interface from carbonate-based and ether-based electrolytes on the HC has not been deeply analysed. Herein, by combining the theory calculation with experiments analysis of Fourier transform infrared...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2023-09, Vol.462, p.142787, Article 142787 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hard carbon (HC) is the key anode materials for sodium ion batteries. While the electrolyte and interface from carbonate-based and ether-based electrolytes on the HC has not been deeply analysed. Herein, by combining the theory calculation with experiments analysis of Fourier transform infrared spectroscopy, we successfully construct accurate Na+-solvents models that the oxidation resistance stability of Na+[EC2/EMC/DMC][PF6−] complexes are better than that of Na+[DIGLYME4][CF3SO3−] sheaths. And also, the reduction resistance stability of the ether-based electrolyte is better than that of ester-based electrolyte. It is also demonstrated that the ether-based electrolytes generate dense, thin and fast Na-ions transport SEI on the HC particles at the initial stage of the electrochemical cycle, and the organics fill the gaps between inorganics in carbonated ester-based electrolytes, effectively preventing electrolyte decomposition and permeation in the long cycling process by CV, TEM, EIS, AFM, ToF-SIMS and XPS analysis. It is also found that the ratio of organic to inorganic components in DIGLYME-based electrolyte is greater than in EC/DMC/EMC-based electrolyte after cycling, which may affect the electrochemical performance of cells. |
---|---|
ISSN: | 0013-4686 |
DOI: | 10.1016/j.electacta.2023.142787 |