Glyoxylic acetals as electrolytes for Si/Graphite anodes in lithium-ion batteries

Using silicon-containing anodes in lithium-ion batteries is mainly impeded by undesired side reactions at the electrode/electrolyte interface leading to the gradual loss of active lithium. Therefore, electrolyte formulations are needed, which form a solid electrolyte interphase (SEI) that can accomm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2022-08, Vol.424, p.140642, Article 140642
Hauptverfasser: Gehrlein, Lydia, Leibing, Christian, Pfeifer, Kristina, Jeschull, Fabian, Balducci, Andrea, Maibach, Julia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using silicon-containing anodes in lithium-ion batteries is mainly impeded by undesired side reactions at the electrode/electrolyte interface leading to the gradual loss of active lithium. Therefore, electrolyte formulations are needed, which form a solid electrolyte interphase (SEI) that can accommodate to the volume changes of the silicon particles. In this work, we analyze the influence of two glyoxylic acetals on the cycling stability of silicon-containing graphite anodes, namely TMG (1 M LiTFSI in 1,1,2,2-tetramethoxyethane) and TEG (1 M LiTFSI in 1,1,2,2-tetraethoxyethane). The choice of these two electrolyte formulations was motivated by their positive impact on the thermal stability of LIBs. We investigate solid electrolyte decomposition products employing x-ray photoelectron spectroscopy (XPS). The cycling stability of Si/Gr anodes in each electrolyte is correlated to changes in SEI thickness, composition, and morphology upon formation and aging. This evaluation is completed by comparing the performance of TMG and TEG to two carbonate-based reference electrolytes (1 M LiTFSI in 1:1 ethylene carbonate: dimethyl carbonate and 1 M LiPF6 in the same solvent mixture). Cells cycled in TMG display inferior electrochemical performance to the two reference electrolytes. By contrast, cells cycled in TEG exhibit the best capacity retention with overall higher capacities. We can correlate this to better film-forming properties of the TEG solvent as it forms a smoother and more interconnected SEI, which can better adapt to the volume changes of the silicon. Therefore, TEG appears to be a promising electrolyte solvent for silicon-containing anodes. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2022.140642