IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation
•For IDH1 status prediction, 9 radiomic features were selected via Boruta algorithm.•Radiomics of glioblastoma predicted IDH1 status well in manual and V-Net methods.•V-Net demonstrated robust segmentation of entire glioblastoma on T2-weighted MRI. This study aimed to determine whether MR-based radi...
Gespeichert in:
Veröffentlicht in: | European journal of radiology 2020-07, Vol.128, p.109031, Article 109031 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •For IDH1 status prediction, 9 radiomic features were selected via Boruta algorithm.•Radiomics of glioblastoma predicted IDH1 status well in manual and V-Net methods.•V-Net demonstrated robust segmentation of entire glioblastoma on T2-weighted MRI.
This study aimed to determine whether MR-based radiomics of glioblastoma can predict the isocitrate dehydrogenase-1 (IDH1) mutation status and compare predictive performances between manual and fully automatic deep-learning segmentations.
Forty-five glioblastoma patients with pretreatment T2-weighted MRIs were retrospectively evaluated. Manual segmentations of glioblastoma and peri-tumoral edema were trained via a deep neural network (V-Net). An independent external cohort of 137 glioblastoma patients from the Cancer Imaging Archive was also included (test set 1, n = 46; test set 2, n = 91). Test set 1—without known IDH1 status—was used to calculate dice similarity coefficients (DSC) between the two segmentation methods (manual & V-Net). From test set 2, all-relevant radiomic features were selected via a random forest-based wrapper algorithm for IDH1 prediction. Receiver operating characteristics (ROC) curves with areas under the curve (AUC) were plotted as performance metrics for both methods.
Among 136 patients (45 and 91 patients from our institution and test set 2, respectively), 17 patients (11.2 %) had IDH1 mutations. The mean DSC of test set 1 was 0.78 ± 0.14 (range, 0.34−0.94). A subset of 9 all-relevant features (8.4 %, 9/107) was selected. V-Net segmentation of the test set 2 yielded similar performance in predicting IDH1 mutation as compared to manual segmentation (V-Net AUC = 0.86 vs. manual AUC = 0.90). The optimal cut-point threshold of AUC yielded 86.8 % accuracy for manual segmentation and 75.8 % for V-Net segmentation.
V-Net showed robust segmentation capability of glioblastoma on T2-weighted MRI. All-relevant radiomics features from both segmentation methods yielded a similar performance in IDH1 prediction. |
---|---|
ISSN: | 0720-048X 1872-7727 |
DOI: | 10.1016/j.ejrad.2020.109031 |