Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation
Protein degradation is a promising strategy for drug development. Proteolysis-targeting chimeras (PROTACs) hijacking the E3 ligase cereblon (CRBN) exhibit enormous potential and universal degradation performance due to the small molecular weight of CRBN ligands. In this study, the CRBN-recruiting PR...
Gespeichert in:
Veröffentlicht in: | European journal of medicinal chemistry 2021-11, Vol.223, p.113645, Article 113645 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein degradation is a promising strategy for drug development. Proteolysis-targeting chimeras (PROTACs) hijacking the E3 ligase cereblon (CRBN) exhibit enormous potential and universal degradation performance due to the small molecular weight of CRBN ligands. In this study, the CRBN-recruiting PROTACs were explored on the degradation of oncogenic fusion protein BCR-ABL, which drives the pathogenesis of chronic myeloid leukemia (CML). A series of novel PROTACs were synthesized by conjugating BCR-ABL inhibitor dasatinib to the CRBN ligand including pomalidomide and lenalidomide, and the extensive structure-activity relationship (SAR) studies were performed focusing on optimization of linker parameters. Therein, we uncovered that pomalidomide-based degrader 17 (SIAIS056), possessing sulfur-substituted carbon chain linker, exhibits the most potent degradative activity in vitro and favorable pharmacokinetics in vivo. Besides, degrader 17 also degrades a variety of clinically relevant resistance-conferring mutations of BCR-ABL. Furthermore, degrader 17 induces significant tumor regression against K562 xenograft tumors. Our study indicates that 17 as an efficacious BCR-ABL degrader warrants intensive investigation for the future treatment of BCR-ABL+ leukemia.
[Display omitted]
•The extensive SAR studies identify 17 as a novel promising BCR-ABL degrader.•The lengths and compositions of linkers influence the PK properties of PROTACs.•17 effectively degrades wild type and a variety of mutations of BCR-ABL in vitro.•17 displayed favorable PK profile and robust antitumor efficacy in vivo. |
---|---|
ISSN: | 0223-5234 1768-3254 |
DOI: | 10.1016/j.ejmech.2021.113645 |