Scaled graphs for reset control system analysis
Scaled graphs allow for graphical analysis of nonlinear systems, but are generally difficult to compute. The aim of this paper is to develop a method for approximating the scaled graph of reset controllers. A key ingredient in our approach is the generalized Kalman–Yakubovich–Popov lemma to determin...
Gespeichert in:
Veröffentlicht in: | European journal of control 2024-11, Vol.80, p.101050, Article 101050 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Scaled graphs allow for graphical analysis of nonlinear systems, but are generally difficult to compute. The aim of this paper is to develop a method for approximating the scaled graph of reset controllers. A key ingredient in our approach is the generalized Kalman–Yakubovich–Popov lemma to determine input specific input–output properties of a reset controller in the time domain. By combining the obtained time domain properties to cover the full input space, an over-approximation of the scaled graph is constructed. Using this approximation, we establish a feedback interconnection result and provide connections to classical input–output analysis frameworks. Several examples show the relevance of the results for the analysis and design of reset control systems. |
---|---|
ISSN: | 0947-3580 |
DOI: | 10.1016/j.ejcon.2024.101050 |