Estimation of region of attraction with Gaussian process classification

This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium points, a challenging problem for a general nonlinear system, using binary Gaussian process classification (GPC). Interest in this method stems from the fact that an arbitrary point belonging to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2023-11, Vol.74, p.100856, Article 100856
Hauptverfasser: Wang, Ke, Menon, Prathyush P., Veenman, Joost, Bennani, Samir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a methodology for assessing the region of attraction (ROA) of stable equilibrium points, a challenging problem for a general nonlinear system, using binary Gaussian process classification (GPC). Interest in this method stems from the fact that an arbitrary point belonging to the system’s state space can be classified in the region of attraction or not. Importantly the proposed GPC approach for determining ROA gives a minimum confidence level associated with the estimate. Moreover, the active learning scheme helps to update the GPC model and yield better predictions by selecting informative observations from the state space sequentially. The methodology is applied to several examples to illustrate the effectiveness of this approach.
ISSN:0947-3580
1435-5671
DOI:10.1016/j.ejcon.2023.100856