Quasi-transitive K∞-minor free graphs

We prove that every locally finite quasi-transitive graph that does not contain K∞ as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2025-02, Vol.124, p.104056, Article 104056
1. Verfasser: Hamann, Matthias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every locally finite quasi-transitive graph that does not contain K∞ as a minor is quasi-isometric to some planar quasi-transitive locally finite graph. This solves a problem of Esperet and Giocanti and improves their recent result that such graphs are quasi-isometric to some planar graph of bounded degree.
ISSN:0195-6698
DOI:10.1016/j.ejc.2024.104056