Hadwiger’s conjecture and topological bounds
The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined...
Gespeichert in:
Veröffentlicht in: | European journal of combinatorics 2024-12, Vol.122, p.104033, Article 104033 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Odd Hadwiger’s conjecture, formulated by Gerards and Seymour in 1995, is a substantial strengthening of Hadwiger’s famous coloring conjecture from 1943. We investigate whether the hierarchy of topological lower bounds on the chromatic number, introduced by Matoušek and Ziegler (2003) and refined recently by Daneshpajouh and Meunier (2023), forms a potential avenue to a disproof of Hadwiger’s conjecture or its odd-minor variant. In this direction, we prove that, in a very general sense, every graph G that admits a topological lower bound of t on its chromatic number, contains K⌊t/2⌋+1 as an odd-minor. This solves a problem posed by Simonyi and Zsbán (2010).
We also prove that if for a graph G the Dol’nikov-Kříž lower bound on the chromatic number (one of the lower bounds in the aforementioned hierarchy) attains a value of at least t, then G contains Kt as a minor.
Finally, extending results by Simonyi and Zsbán, we show that the Odd Hadwiger’s conjecture holds for Schrijver and Kneser graphs for any choice of the parameters. The latter are canonical examples of graphs for which topological lower bounds on the chromatic number are tight. |
---|---|
ISSN: | 0195-6698 |
DOI: | 10.1016/j.ejc.2024.104033 |