Proof of a conjecture on the Seidel energy of graphs

Let G be a graph with the vertex set {v1,…,vn}. The Seidel matrix of G is an n×n matrix whose diagonal entries are zero, ij-th entry is −1 if vi and vj are adjacent and otherwise is 1. The Seidel energy of G, denoted by E(S(G)), is defined to be the sum of absolute values of all eigenvalues of the S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2020-05, Vol.86, p.103078, Article 103078
Hauptverfasser: Akbari, S., Einollahzadeh, M., Karkhaneei, M.M., Nematollahi, M.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a graph with the vertex set {v1,…,vn}. The Seidel matrix of G is an n×n matrix whose diagonal entries are zero, ij-th entry is −1 if vi and vj are adjacent and otherwise is 1. The Seidel energy of G, denoted by E(S(G)), is defined to be the sum of absolute values of all eigenvalues of the Seidel matrix of G. Haemers conjectured that the Seidel energy of any graph of order n is at least 2n−2 and , up to Seidel equivalence, the equality holds for Kn. Recently, this conjecture was proved for n≤12. We establish the validity of Haemers’ Conjecture in general.
ISSN:0195-6698
DOI:10.1016/j.ejc.2019.103078