The importance of density dependence in juvenile mosquito development and survival: A model-based investigation

Mosquitoes are vectors of numerous pathogens that cause infectious diseases, and they pose a significant global health burden as a result. As such, more reliable field-relevant models to study mosquito population dynamics and life history traits such as development time and survival of mosquito larv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2021-01, Vol.440, p.109357, Article 109357
Hauptverfasser: Walker, Melody, Robert, Michael A., Childs, Lauren M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mosquitoes are vectors of numerous pathogens that cause infectious diseases, and they pose a significant global health burden as a result. As such, more reliable field-relevant models to study mosquito population dynamics and life history traits such as development time and survival of mosquito larva would be of great value. In Aedes mosquitoes, progression through early life stages is known to be density-dependent. Despite its importance, density dependence is largely ignored or oversimplified in many existing simulation models, leading to less accurate predictions of development and survival during the early life stages. Furthermore, density dependence is frequently assumed to impact only larval survival and not development time in models, despite empirical evidence for density-dependent development. Here, we develop a discrete-time model of mosquito larval population dynamics which accounts for density impacts on both survival and development time. We demonstrate the validity of our model using publicly available semi-field data of larval density and pupation time across a six-month experiment. Using our model, we found that incorporating density dependence during larval development is important to the accurate prediction of mosquito pupation. This is especially true when considering density-dependent development time for mosquito larva as opposed to density-dependent larval survival. We determined that the incorporation of simple functional forms to describe density dependence in simulation models gives improved prediction results over models that ignore density dependence entirely. Such simple functional forms can easily be incorporated into existing models, and thus help improve field-relevant models of mosquito population dynamics, particularly in Aedes and other container-inhabiting mosquitoes that are known to experience density dependence during larval development. •Models without density dependence do not capture trends in Aedes mosquito data.•Density dependence in larval development time may be more important than in survival.•Simple mathematical descriptions of density dependence describe dynamics well.•Less complex density dependence models are useful for container-inhabiting mosquitoes.
ISSN:0304-3800
DOI:10.1016/j.ecolmodel.2020.109357