Comparison of two individual identification algorithms for snow leopards (Panthera uncia) after automated detection
Photo-identification of individual snow leopards (Panthera uncia) is the primary data source for density estimation via capture-recapture statistical methods. To identify individual snow leopards in camera trap imagery, it is necessary to match individuals from a large number of images from multiple...
Gespeichert in:
Veröffentlicht in: | Ecological informatics 2023-11, Vol.77, p.102214, Article 102214 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photo-identification of individual snow leopards (Panthera uncia) is the primary data source for density estimation via capture-recapture statistical methods. To identify individual snow leopards in camera trap imagery, it is necessary to match individuals from a large number of images from multiple cameras and historical catalogues, which is both time-consuming and costly. The camouflaged snow leopards also make it difficult for machine learning to classify photos, as they blend in so well with the surrounding mountain environment, rendering applicable software solutions unavailable for the species. To potentially make snow leopard individual identification available via an artificial intelligence (AI) software interface, we first trained and evaluated image classification techniques for a convolutional neural network, pose invariant embeddings (PIE) (a triplet loss network), and compared the accuracy of PIE to that of the HotSpotter algorithm (a SIFT-based algorithm). Data were acquired from a curated library of free-ranging snow leopards taken in Afghanistan between 2012 and 2019 and from captive animals in zoos in Finland, Sweden, Germany, and the United States. We discovered several flaws in the initial PIE model, such as a small amount of background matching, that was addressed, albeit likely not fixed, using background subtraction (BGS) and left-right mirroring (LR) techniques which demonstrated reasonable accuracy (Rank 1: 74% Rank-5: 92%) comparable to the Hotspotter results (Rank 1: 74% Rank 2: 84%)The PIE BGS LR model, in conjunction with Hotspotter, yielded the following results: Rank-1: 85%, Rank-5: 95%, Rank-20: 99%. In general, our findings indicate that PIE BGS LR, in conjunction with HotSpotter, can classify snow leopards more accurately than using either algorithm alone.
•The largest snow leopard dataset for deep learning research was compiled from zoo and field data.•PIE and Hotspotter run together increase snow leopard image reidentification to 85% Rank-1.•Background subtraction and left-right mirroring decreased overfitting with the PIE algorithm.•Whiskerbook included PIE and Hotspotter deep learning processing along with data curation tools. |
---|---|
ISSN: | 1574-9541 |
DOI: | 10.1016/j.ecoinf.2023.102214 |