Effect of NF-κB signal pathway on mucus secretion induced by atmospheric PM2.5 in asthmatic rats

Exposure to PM2.5 can stimulate the mucus secretion of airway, affecting the development of bronchial asthma. NF-κB signal pathway plays an important role in inflammation and dysimmunity, what may contribute to the mucus secretion. The present study was undertaken to explore the effect of NF-κB sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2020-03, Vol.190, p.110094, Article 110094
Hauptverfasser: Liu, Ying, Zhang, Bo, Zhang, Tianrong, Wang, Haodong, Peng, Liping, Zhou, Liting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exposure to PM2.5 can stimulate the mucus secretion of airway, affecting the development of bronchial asthma. NF-κB signal pathway plays an important role in inflammation and dysimmunity, what may contribute to the mucus secretion. The present study was undertaken to explore the effect of NF-κB signal pathway on mucus secretion induced by PM2.5 in rats with bronchial asthma. Fifty rats (25 males and 25 females) were divided randomly into the control group, ovalbumin asthmatic model group, asthma low-, middle- and high-dose groups (n = 10, 5 males and 5 females each group). The control group, ovalbumin asthmatic model group received physiological saline; the asthma low-, middle- and high-dose groups received 1.5, 7.5 and 37.5 mg/kg PM2.5 on saline, which instilled into the trachea at 2-day intervals for two doses. Lung histopathology was observed by HE staining. The mRNA levels of NF-κB family gens were detected with real time PCR. IκB-α protein expression levels were detected with Western blot. IL-1β, TNF-α and Muc5ac levels were detected by ELISA. Respiratory mucus secretion increased with increasing dose of PM2.5. Compared with healthy rats, the protein expression levels of IκB-α were significantly lower in the lung of asthmatic rats (p 
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2019.110094