Mechanisms of arsenic assimilation by plants and countermeasures to attenuate its accumulation in crops other than rice

Arsenic is a ubiquitous metalloid in the biosphere, and its origin can be either geogenic or anthropic. Four oxidation states (−3, 0, +3 and + 5) characterize organic and inorganic As- compounds. Although arsenic is reportedly a toxicant, its harmful effects are closely related to its chemical form:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2019-12, Vol.185, p.109701, Article 109701
Hauptverfasser: Allevato, Enrica, Stazi, Silvia Rita, Marabottini, Rosita, D'Annibale, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arsenic is a ubiquitous metalloid in the biosphere, and its origin can be either geogenic or anthropic. Four oxidation states (−3, 0, +3 and + 5) characterize organic and inorganic As- compounds. Although arsenic is reportedly a toxicant, its harmful effects are closely related to its chemical form: inorganic compounds are most toxic, followed by organic ones and finally by arsine gas. Although drinking water is the primary source of arsenic exposure to humans, the metalloid enters the food chain through its uptake by crops, the extent of which is tightly dependent on its phytoavailability. Arsenate is taken up by roots via phosphate carriers, while arsenite is taken up by a subclass of aquaporins (NIP), some of which involved in silicon (Si) transport. NIP and Si transporters are also involved in the uptake of methylated forms of As. Once taken up, its distribution is regulated by the same type of transporters albeit with mobility efficiencies depending on As forms and its accumulation generally occurs in the following decreasing order: roots > stems > leaves > fruits (seeds). Besides providing a survey on the uptake and transport mechanisms in higher plants, this review reports on measures able to reducing plant uptake and the ensuing transfer into edible parts. On the one hand, these measures include a variety of plant-based approaches including breeding, genetic engineering of transport systems, graft/rootstock combinations, and mycorrhization. On the other hand, they include agronomic practices with a particular focus on the use of inorganic and organic amendments, treatment of irrigation water, and fertilization. •Human consumption of agricultural foodstuffs contaminated with arsenic is a relevant route of exposure to this metalloid.•As contamination in edible crops is due to its presence in soil and irrigation water.•Health hazards in food depend on As speciation and bioavailability.•Several measures are available to reduce arsenic transfer to edible plant tissues.•These measures can be divided into plant-oriented and indirect techniques.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2019.109701