Atmospheric phosphorus and its geochemical cycling: Fundamentals, progress, and perspectives
Phosphorus (P) is an essential macronutrient for all organisms that can be redistributed between terrestrial and oceanic systems via atmospheric emission, transport, transformation, and deposition. Moreover, since natural P mobilization from the lithosphere to ecosystems is a relatively slow process...
Gespeichert in:
Veröffentlicht in: | Earth-science reviews 2023-08, Vol.243, p.104492, Article 104492 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phosphorus (P) is an essential macronutrient for all organisms that can be redistributed between terrestrial and oceanic systems via atmospheric emission, transport, transformation, and deposition. Moreover, since natural P mobilization from the lithosphere to ecosystems is a relatively slow process, the role of atmospheric P seems to play an important role in its cycling. This paper provides a comprehensive review of the analytical methods used for characterizing atmospheric P species and the methods used for identifying P sources (e.g., oxygen stable isotope compositions of phosphate, δ18OP) discussing their respective suitability, advantages, and limitations. While at a regional scale δ18OP of atmospheric P are generally source-specific, at a more global scale these isotope compositions tend to overlap between sources, rendering their tracer potential more difficult. Furthermore, various sources of atmospheric P and their fluxes are compiled, and the potential uncertainties in the estimates of their respective contributions are reviewed, which suggest that more model inter-comparations, parameter optimizations, and field observations are still needed. Moreover, we summarize the long-range transport process controlling P atmospheric dispersion at various scales (focusing on dust and biomass burning). In addition, the transformation mechanism, especially acid dissolution, that modifies the P cycle during its residence time in the atmosphere is depicted. Finally, we propose that land cover may be a potential key control to the atmospheric P deposition rate based on the critical analysis of previously published rates. This review allows us to ultimately propose key recommendations for fostering future research on P geochemical cycling. |
---|---|
ISSN: | 0012-8252 1872-6828 |
DOI: | 10.1016/j.earscirev.2023.104492 |