Parameter identification algorithm for ship manoeuvrability and wave peak model based multi-innovation stochastic gradient algorithm use data filtering technique
This paper addresses the issue of identifying ship motion parameters and wave peak frequency. Utilising the Euler discretisation principle, we establish a discrete-time auto-regressive moving average model with exogenous input (ARMAX) for the ship-wave system. Furthermore, we develop a filtering-bas...
Gespeichert in:
Veröffentlicht in: | Digital signal processing 2024-05, Vol.148, p.104445, Article 104445 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the issue of identifying ship motion parameters and wave peak frequency. Utilising the Euler discretisation principle, we establish a discrete-time auto-regressive moving average model with exogenous input (ARMAX) for the ship-wave system. Furthermore, we develop a filtering-based stochastic gradient algorithm for the system by applying filtering techniques and auxiliary model identification idea. A filtering-based multi-innovation stochastic gradient algorithm, utilizing the multi-innovation identification theory, was developed to enhance the convergence rate and accuracy of parameter identification. This approach was found to be more effective than the filtering-based stochastic gradient algorithm. Simulation results validate the efficacy of the proposed algorithm in parameter identification.
•Based on the Eulerian discretization idea, a ship-wave discrete-time autoregressive moving average model with exogenous inputs is derived.•Introducing the filtering technique and the auxiliary model identification idea, a filtered stochastic gradient algorithm is proposed.•A filtering-based multi-innovation stochastic gradient algorithm is proposed based on filtered stochastic gradient identification. |
---|---|
ISSN: | 1051-2004 1095-4333 |
DOI: | 10.1016/j.dsp.2024.104445 |