Minimum gradation in greyscales of graphs
In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered...
Gespeichert in:
Veröffentlicht in: | Discrete optimization 2023-05, Vol.48, p.100773, Article 100773 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present the notion of greyscale of a graph as a colouring of its vertices that uses colours from the real interval [0,1]. Any greyscale induces another colouring by assigning to each edge the non-negative difference between the colours of its vertices. These edge colours are ordered in lexicographical decreasing ordering and give rise to a new element of the graph: the gradation vector. We introduce the notion of minimum gradation vector as a new invariant for the graph and give polynomial algorithms to obtain it. These algorithms also output all greyscales that produce the minimum gradation vector. This way we tackle and solve a novel vectorial optimization problem in graphs that may generate more satisfactory solutions than those generated by known scalar optimization approaches. |
---|---|
ISSN: | 1572-5286 1873-636X |
DOI: | 10.1016/j.disopt.2023.100773 |