The VC dimension of quadratic residues in finite fields
We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, Fq, when considered as a subset of the additive group. We conjecture that as q→∞, the squares have the maximum possible VC-dimension, viz. (1+o(1))log2q. We prove, using the Weil bound...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2025-01, Vol.348 (1), p.114192, Article 114192 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, Fq, when considered as a subset of the additive group. We conjecture that as q→∞, the squares have the maximum possible VC-dimension, viz. (1+o(1))log2q. We prove, using the Weil bound for multiplicative character sums, that the VC-dimension is ⩾(12+o(1))log2q. We also provide numerical evidence for our conjectures. The results generalize to multiplicative subgroups Γ⊆Fq× of bounded index. |
---|---|
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2024.114192 |