The VC dimension of quadratic residues in finite fields

We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, Fq, when considered as a subset of the additive group. We conjecture that as q→∞, the squares have the maximum possible VC-dimension, viz. (1+o(1))log2⁡q. We prove, using the Weil bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2025-01, Vol.348 (1), p.114192, Article 114192
Hauptverfasser: McDonald, Brian, Sahay, Anurag, Wyman, Emmett L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Vapnik–Chervonenkis (VC) dimension of the set of quadratic residues (i.e. squares) in finite fields, Fq, when considered as a subset of the additive group. We conjecture that as q→∞, the squares have the maximum possible VC-dimension, viz. (1+o(1))log2⁡q. We prove, using the Weil bound for multiplicative character sums, that the VC-dimension is ⩾(12+o(1))log2⁡q. We also provide numerical evidence for our conjectures. The results generalize to multiplicative subgroups Γ⊆Fq× of bounded index.
ISSN:0012-365X
DOI:10.1016/j.disc.2024.114192