The odd girth of generalized Johnson graphs
For any non-negative integers v>k>i, the generalized Johnson graph, X=J(v,k,i), is the graph whose vertices are the k-subsets of a v-set, and where any two vertices A and B are adjacent whenever |A∩B|=i. In this note, we prove that if v≥2k and (v,k,i)≠(2k,k,0), then the odd girth of X is given...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2024-07, Vol.347 (7), p.113985, Article 113985 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any non-negative integers v>k>i, the generalized Johnson graph, X=J(v,k,i), is the graph whose vertices are the k-subsets of a v-set, and where any two vertices A and B are adjacent whenever |A∩B|=i. In this note, we prove that if v≥2k and (v,k,i)≠(2k,k,0), then the odd girth of X is given by:og(X)=2⌈k−iv−2k+2i⌉+1. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2024.113985 |