The odd girth of generalized Johnson graphs

For any non-negative integers v>k>i, the generalized Johnson graph, X=J(v,k,i), is the graph whose vertices are the k-subsets of a v-set, and where any two vertices A and B are adjacent whenever |A∩B|=i. In this note, we prove that if v≥2k and (v,k,i)≠(2k,k,0), then the odd girth of X is given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2024-07, Vol.347 (7), p.113985, Article 113985
Hauptverfasser: Caughman, John S., Herman, Ari J., Terada, Taiyo S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any non-negative integers v>k>i, the generalized Johnson graph, X=J(v,k,i), is the graph whose vertices are the k-subsets of a v-set, and where any two vertices A and B are adjacent whenever |A∩B|=i. In this note, we prove that if v≥2k and (v,k,i)≠(2k,k,0), then the odd girth of X is given by:og(X)=2⌈k−iv−2k+2i⌉+1.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2024.113985