The cubic vertices of solid minimal bricks

A 3-connected graph is a brick if, for any two vertices u and v, G−u−v has a perfect matching. A brick G is minimal if G−e is not a brick for every edge e of G. Norine and Thomas [J. Combin. Theory Ser. B, 96(4) (2006), pp. 505-513.] conjectured that there exists α>0 such that every minimal brick...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2024-02, Vol.347 (2), p.113746, Article 113746
Hauptverfasser: He, Xiaoling, Lu, Fuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A 3-connected graph is a brick if, for any two vertices u and v, G−u−v has a perfect matching. A brick G is minimal if G−e is not a brick for every edge e of G. Norine and Thomas [J. Combin. Theory Ser. B, 96(4) (2006), pp. 505-513.] conjectured that there exists α>0 such that every minimal brick G contains at least α|V(G)| cubic vertices. A brick is solid if for any two disjoint odd cycles C1 and C2, G−V(C1∪C2) has no perfect matching. In this paper, by proving that every solid minimal brick G has at least 2|V(G)|/5 cubic vertices, we obtain the first non-trivial class of graphs that support the above conjecture.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2023.113746