Saturation for the 3-uniform loose 3-cycle
Let F and H be k-uniform hypergraphs. We say H is F-saturated if H does not contain a subgraph isomorphic to F, but H+e does for any hyperedge e∉E(H). The saturation number of F, denoted satk(n,F), is the minimum number of edges in a F-saturated k-uniform hypergraph H on n vertices. Let C3(3) denote...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-11, Vol.346 (11), p.113504, Article 113504 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let F and H be k-uniform hypergraphs. We say H is F-saturated if H does not contain a subgraph isomorphic to F, but H+e does for any hyperedge e∉E(H). The saturation number of F, denoted satk(n,F), is the minimum number of edges in a F-saturated k-uniform hypergraph H on n vertices. Let C3(3) denote the 3-uniform loose cycle on 3 edges. In this work, we prove that(43+o(1))n≤sat3(n,C3(3))≤32n+O(1). This is the first non-trivial result on the saturation number for a fixed short hypergraph cycle. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2023.113504 |