Saturation for the 3-uniform loose 3-cycle

Let F and H be k-uniform hypergraphs. We say H is F-saturated if H does not contain a subgraph isomorphic to F, but H+e does for any hyperedge e∉E(H). The saturation number of F, denoted satk(n,F), is the minimum number of edges in a F-saturated k-uniform hypergraph H on n vertices. Let C3(3) denote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2023-11, Vol.346 (11), p.113504, Article 113504
Hauptverfasser: English, Sean, Kostochka, Alexandr, Zirlin, Dara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F and H be k-uniform hypergraphs. We say H is F-saturated if H does not contain a subgraph isomorphic to F, but H+e does for any hyperedge e∉E(H). The saturation number of F, denoted satk(n,F), is the minimum number of edges in a F-saturated k-uniform hypergraph H on n vertices. Let C3(3) denote the 3-uniform loose cycle on 3 edges. In this work, we prove that(43+o(1))n≤sat3(n,C3(3))≤32n+O(1). This is the first non-trivial result on the saturation number for a fixed short hypergraph cycle.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2023.113504