General polygonal line tilings and their matching complexes

A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2023-07, Vol.346 (7), p.113428, Article 113428
Hauptverfasser: Bayer, Margaret, Jelić Milutinović, Marija, Vega, Julianne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In this paper, we extend Matsushita's work to include a larger family of graphs and carry out a closer analysis of lines of triangles and pentagons, where the Fibonacci numbers arise.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2023.113428