General polygonal line tilings and their matching complexes
A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In th...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-07, Vol.346 (7), p.113428, Article 113428 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A (general) polygonal line tiling is a graph formed by a string of cycles, each intersecting the previous at an edge, no three intersecting. In 2022, Matsushita proved the matching complex of a certain type of polygonal line tiling with even cycles is homotopy equivalent to a wedge of spheres. In this paper, we extend Matsushita's work to include a larger family of graphs and carry out a closer analysis of lines of triangles and pentagons, where the Fibonacci numbers arise. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2023.113428 |