The anti-Ramsey threshold of complete graphs
For graphs G and H, let G→rbH denote the property that, for every proper edge-colouring of G, there is a rainbow H in G. For every graph H, the threshold function pHrb=pHrb(n) of this property in the random graph G(n,p) satisfies pHrb=O(n−1/m(2)(H)), where m(2)(H) denotes the so-called maximum 2-den...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2023-05, Vol.346 (5), p.113343, Article 113343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For graphs G and H, let G→rbH denote the property that, for every proper edge-colouring of G, there is a rainbow H in G. For every graph H, the threshold function pHrb=pHrb(n) of this property in the random graph G(n,p) satisfies pHrb=O(n−1/m(2)(H)), where m(2)(H) denotes the so-called maximum 2-density of H. Completing a result of Nenadov, Person, Škorić, and Steger [J. Combin. Theory Ser. B 124 (2017), 1–38], we prove a matching lower bound for pKkrb for k⩾5. Furthermore, we show that pK4rb=n−7/15≪n−1/m(2)(K4). |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2023.113343 |