On strong avoiding games

Given an increasing graph property F, the strong Avoider-Avoider F game is played on the edge set of a complete graph. Two players, Red and Blue, take turns in claiming previously unclaimed edges with Red going first, and the player whose graph possesses F first loses the game. If the property F is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2023-03, Vol.346 (3), p.113270, Article 113270
Hauptverfasser: Stojaković, Miloš, Stratijev, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an increasing graph property F, the strong Avoider-Avoider F game is played on the edge set of a complete graph. Two players, Red and Blue, take turns in claiming previously unclaimed edges with Red going first, and the player whose graph possesses F first loses the game. If the property F is “containing a fixed graph H”, we refer to the game as the H game. We prove that Blue has a winning strategy in two strong Avoider-Avoider games, P4 game and CC>3 game, where CC>3 is the property of having at least one connected component on more than three vertices. We also study a variant, the strong CAvoider-CAvoider games, with additional requirement that the graph of each of the players must stay connected throughout the game. We prove that Blue has a winning strategy in the strong CAvoider-CAvoider games S3 and P4, as well as in the Cycle game, where the players aim at avoiding all cycles.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2022.113270